skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cross, Brendan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The naming game (NG) is a classic model for studying the emergence and evolution of language within a population. In this article, we extend the traditional NG model to encompass multiple committed opinions and investigate the system dynamics on the complete graph with an arbitrarily large population and random networks of finite size. For the fully connected complete graph, the homogeneous mixing condition enables us to use mean-field theory to analyze the opinion evolution of the system. However, when the number of opinions increases, the number of variables describing the system grows exponentially. To mitigate this, we focus on a special scenario where the largest group of committed agents compete with a motley of committed groups, each of which is smaller than the largest one, while initially, most of uncommitted agents hold one unique opinion. This scenario is chosen for its recurrence in diverse societies and its potential for complexity reduction by unifying agents from smaller committed groups into one category. Our investigation reveals that when the size of the largest committed group reaches the critical threshold, most of uncommitted agents change their beliefs to this opinion, triggering a phase transition. Further, we derive the general formula for the multiopinion evolution using a recursive approach, enabling investigation into any scenario. Finally, we employ agent-based simulations to reveal the opinion evolution and dominance transition in random graphs. Our results provide insights into the conditions under which the dominant opinion emerges in a population and the factors that influence these conditions. 
    more » « less
  2. Abstract Social media has been transforming political communication dynamics for over a decade. Here using nearly a billion tweets, we analyse the change in Twitter’s news media landscape between the 2016 and 2020 US presidential elections. Using political bias and fact-checking tools, we measure the volume of politically biased content and the number of users propagating such information. We then identify influencers—users with the greatest ability to spread news in the Twitter network. We observe that the fraction of fake and extremely biased content declined between 2016 and 2020. However, results show increasing echo chamber behaviours and latent ideological polarization across the two elections at the user and influencer levels. 
    more » « less